
1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Mining Spatio-temporal Reachable Regions With
Multiple Sources over Massive Trajectory Data

Yichen Ding, Xun Zhou, Guojun Wu, Yanhua Li, Jie Bao, Yu Zheng, Jun Luo

Abstract—Given a set of user-specified locations and a massive trajectory dataset, the task of mining spatio-temporal reachable
regions aims at finding which road segments are reachable from these locations within a given temporal period based on the historical
trajectories. Determining such spatio-temporal reachable regions with high accuracy is vital for many urban applications, such as
location-based recommendations and advertising. Traditional approaches to answering such queries essentially perform a
distance-based range query over the given road network, which does not consider dynamic travel time at different time of day. By
contrast, we propose a data-driven approach to formulate the problem as mining actual reachable regions based on a real historical
trajectory dataset. Efficient algorithms for the Single-location spatio-temporal reachability Query (S-Query) and the
Union-of-multi-location spatio-temporal reachability Query (U-Query) were presented in our recent work. In this paper, we extend the
previous ideas by introducing a new type of reachability query with multiple sources, namely, the Intersection-of-multi-location
spatio-temporal reachability Query (I-Query). As we demonstrate, answering I-Queries efficiently is generally more computationally
challenging than answering either S-Queries or U-Queries because I-Queries involve complicated intersect conditions. We propose
two new algorithms called the Intersection-of-Multi-location Query Maximum Bounding region search (I-MQMB) algorithm and the
I-Query Trace Back Search (I-TBS) algorithm to efficiently answer I-Queries, which utilize an indexing schema composed of a
spatio-temporal index and a connection index. We evaluate our system extensively by using a large-scale real taxi trajectory dataset
that records taxi rides in Shenzhen, China. Our results demonstrate that the proposed approach reduces the running time of I-Queries
by 50% on average compared to the baseline method.

Index Terms—Spatio-temporal databases, Trajectory query processing, Reachability queries

F

1 INTRODUCTION

A spatio-temporal reachability query aims to find the reachable
area in a spatial network from a location or a set of locations in
a given time period. As illustrated in Figure 1, finding the spatio-
temporal reachable region is very useful in many urban applica-
tions, including: (1) location-based recommendation, where a user
wants to find a nearby restaurant based on her current location
and time; (2) location-based advertising, where a business owner
identifies potential spatial regions to arrange special activities,
such as distributing coupons and sales discounts; (3) business
coverage analysis, where chain stores such as UPS and FedEx
can find the overall business spatial coverage of their branches;
and (4) business location selection, where some stores use this
technique to identify convenient locations reachable from major
transportation hubs to open new brunches. In Figure 1, the first two
application examples illustrate the Single-location spatio-temporal
reachability Query (S-Query, with only one query location as
input). The third and fourth applications are used to illustrate the
two extended multi-location queries, namely, the Union-of-multi-
location spatio-temporal reachability Query (U-Query) and the
Intersection-of-multi-location spatio-temporal reachability Query
(I-Query). In this paper, we mainly focus on the I-Query.

Y. Ding and X. Zhou are with the Department of Business Analytics at the
University of Iowa, Iowa City, IA 52242, USA. E-mails: {yichen-ding,xun-
zhou}@uiowa.edu
G. Wu and Y. Li are with the Worcester Polytechnic Institute, Worcester, MA
01609, USA. E-mail: {gwu, yli15}@wpi.edu
J. Bao and Y. Zheng are with Urban Computing Business Unit, JD Finance,
Beijing, CN. E-mail: baojie@jd.com, msyuzheng@outlook.com
J. Luo is with Machine Intelligence Lab, Lenovo Group Limited, Hong Kong.
E-mail: jluo1@lenovo.com

(a) Location-based Recommen-
dation

(b) Location-based Advertising

(c) Business Coverage Analysis (d) Business Location Selection

Fig. 1. Application Examples. These four simple examples offer an
intuitive understanding of how spatio-temporal reachability queries can
be applied in daily life.

The traditional reachability query [1], [2], [3] on the road
network has several drawbacks to fulfill the aforementioned urban
applications. Most of the existing work, for instance, focuses on
a reachable range based on spatial network distance rather than
the time period. However, in real application scenarios, users care
more about the actual travel time rather than distance. Also, most
of the existing works do not account for the impact of time of
query on the results. In reality, due to different traffic conditions
in rush hours versus in normal hours, the reachable area may vary

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

significantly over different time of the day. The traditional spatial-
network-based approaches cannot capture such differences.

To improve the usability of the reachability query in real ap-
plication scenarios, we propose a data-driven approach to find the
spatio-temporal reachable regions based on massive real trajectory
data collected over the road network. The impetus behind our
approach is to formulate the spatio-temporal reachability query as
a data mining process, which finds all the trajectories that passed
the query locations and aggregates all their destinations within the
given time period. This way, the reachable area is more realistic,
as it is essentially a summary from real-life data.

In our prior work [4], we proposed an efficient computational
solution framework to address the reachability query problem.
We first developed a Spatio-Temporal Index (ST-Index) and a
Connection Index (Con-Index) to support the reachability queries.
Then we proposed a Single-location Query Maximum Bounding
region search (SQMB) algorithm to answer a simple spatio-
temporal reachability query with only one query location (S-
Query). Using the solutions to the S-Query as a building block,
we further proposed an Multi-location Query Maximum Bounding
region search (MQMB) algorithm to process the multi-location
reachability query, which is the union of multiple S-Queries’
results (referred to as the U-Query in this paper). The proposed
algorithms significantly reduced the running time of straightfor-
ward S-Query and U-Query processing algorithms on real taxi
trajectory data.

In this paper, we further extend our proposed framework to
answer the I-Query. Given a set of n query locations, the I-Query
finds a subset of the road network, where each output road segment
is reachable from all n query locations. Answering the I-Query
is important to a number of urban applications such as business
location selection and hotspot detection.

Efficiently answering I-Queries is more challenging than an-
swering S-Queries and U-Queries. First of all, the I-Query is a
conjunctive query, where the intersection of input locations could
be an empty set. Therefore, in many scenarios, it is impossible
to apply the expansion idea we previously proposed for the S-
Query and the U-Query. Second, unlike in a U-Query, where all the
input location segments are treated equally, in an I-Query the order
in which the query locations are handled will make a significant
difference in the processing time, since some of them will intersect
early and some will never intersect.

To solve this problem, we propose a novel Intersection-
of-Multi-location Query Maximum Bounding region search (I-
MQMB) algorithm. The algorithm evaluates each individual query
location and efficiently keeps track of the intersection of subgroups
of these input locations. In particular, the algorithm can handle
complex cases when subsets of the reachable regions of the input
query locations intersect at different time steps. We also design an
I-Query Trace Back Search (I-TBS) algorithm to refine the results.
The new contributions of this paper are summarized as follows.

• We formulate the Intersection-of-multi-location spatio-temporal
reachability query (I-Query) and propose an Intersection-of-
Multi-location Query Maximum Bounding region search (I-
MQMB) algorithm to efficiently answer the I-Query.

• We conduct extensive experiments on a real-world road network
with a large-scale moving-object trajectory dataset (with 194
GB size) collected from a metropolis in China to evaluate the
efficiency and effectiveness of our proposed query processing
algorithms. Experimental results show that our I-Query solution

algorithms outperform the straightforward query processing
method by reducing 50%-70% of the query processing time.
The remainder of the paper is organized as follows. Section 2

defines our problem and outlines our system framework. Section 3
presents our data preprocessing and index construction steps. Sec-
tion 4 summarizes our S-query and U-query processing algorithms
from a previous work. Section 5 introduces the new I-MQMB
and the I-TBS algorithms to efficiently answer I-Queries. Section 6
analyzes the time complexity for all 4 presented algorithms.
Section 7 presents the evaluation results based on large scale real
trajectory data. Section 8 discusses the related work. Section 9
discusses the individual privacy of trajectory data and concludes
the paper with future work.
2 OVERVIEW

In this section, we first clarify key terms used in this paper
and provide a formal definition of spatio-temporal reachability
queries with single and multiple query locations. Finally, we give
an overview of the system framework.

2.1 Basic Concepts
• Road Network. A road network can be viewed as a directed

graph G(V,E), where E is a set of edges, and V is a set
of vertices representing the intersections on the road network.
Each road segment has a unique ID, a list of connected road
segments in the network, a list of intermediate points (2 terminal
points at the beginning and the end) that describe its shape,
a value of its length, an indicator of direction (i.e., one-way
or two-way), a type value that identifies its level (primary or
secondary) and a MBR (Minimum Bounding Rectangles) that
describes its spatial coverage.

• Trajectory. A trajectory is a sequence of spatio-temporal
points. Each point consists of a trajectory ID, spatial informa-
tion (e.g., latitude, longitude), a timestamp, and a collection of
properties (e.g., travel speed, direction, or occupancy indicating
if the taxi has a passenger or not).

• Trajectory Reachability. Given a start location S, a road
segment ri in the road network, a start time T , and a travel
duration L, the trajectory reachability refers to whether any
historical trajectories has traversed the road segment ri from
the start location S within the given duration (i.e., from T to
T+L). If the road segment ri is reachable from S, the trajectory
reachability is 1, otherwise the trajectory reachability is 0. For
example, given the above constrains, if there was a trajectory
passing S at t1 and then passing ri at t2 and t2− t1 < L holds,
the trajectory reachability for road segment ri is 1.

• Reachable Area. Given a start location S, a start time T and a
travel duration L, a reachable area is the area covered by a set
of reachable road segments from S.

• Prob-Reachable Area. The Prob-reachable area is a more
general description of the reachable area, where we introduce
a reachable probability that describes the percentage of days
in the historical trajectory dataset that support the fact that a
road segment ri is reachable from S within the given duration.
For example, if there are 20 out of 100 days in the dataset
with moving objects starting from location S and traversing
the reachable area within [T, T + L], the probability of this
reachable area is 20%.

2.2 Problem Definition
Single-Location Spatio-Temporal Reachability Query. Given a
road network graph G(V,E), where E is a set of road segments

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 2. Spatio-Temporal (ST) Reachability Query. An ST Reachability
Query q returns road segments within dash line area. The point(s)
is(are) the start location(s) specified by user and the solid circles in-
dicates the bounding region of the query q. (a) a Single-location ST
reachability Query with only one start location. (b) a Union-of-multi-
location ST reachability Query with 3 start locations. (c) an Intersection-
of-multi-location ST reachability Query with 3 start locations.

TABLE 1
Notations and terminologies

Notation Description

S S is the spatial information of a location includ-
ing longitude and latitude from query q.

T T is a time value indicating the temporal infor-
mation from query q.

L L is the prediction time length of travel duration
from query q.

Prob Prob is the probability of a reachable area for
answering query q.

B B is a set of road segments indicating the maxi-
mum/minimum bounding region of a query q.

ri ri is the ith road segment in the road network.
n n is the total number of road segments.
N(ri, t) N(ri, t) is the Near ID list of road segment ri

in a connection table in time slot t.
F (ri, t) F (ri, t) is the Far ID list of road segment ri in

a connection table in time slot t.
Tri Tri is the ith trajectory in the trajectory history.
m m is the total number of trajectory days.

and V is a set of intersections, a query location S, a start time T , a
travel duration L, a probability ratio Prob and a trajectory database
TR, we want to find a set of road segments as the Prob-reachable
area in the road network G, where the road segments in the set all
have at least Prob chance in the trajectory database to be reached
from the start location S in a given duration. The objective of our
system is to minimize the overall system overhead in finding the
Prob-reachable region based on the user’s query parameters. We
call this type of query “S-Query”.
Multi-Location Spatio-Temporal Reachability Queries.
(1) Union-of-multi-location ST reachability Query (U-Query):
Given a set of n start locations, and all the other input parameters
for the S-Query, the U-Query finds a set of roads, that are
reachable with respect to the query parameters from at least one
of the n query locations.
(2) Intersection-of-multi-location ST reachability Query (I-
Query): Given a set of n start locations, and all the other input
parameters for the S-Query, the I-Query finds a set of roads, that
are reachable with respect to the query parameters from all of the
n query locations.

Figure 2 illustrates examples of the three types of queries:
(a) S-query, (b) U-Query, and (c) I-Query. Table 1 provides a
summary of the notations and terminologies that are frequently
used in this paper.

2.3 System Overview
Figure 3 gives an overview of our proposed system, which consists
of three main components: Pre-processing, Index Construction,
and Query Processing.

Fig. 3. An overview of framework. Take a Single-location ST reachability
Query q with S={r1} as an example, we first find road segment r1 at
start timestamp T by ST-Index and then jump to other road segments
according to Con-Index within travel duration L. Finally, we trace back
search from maximum bounding region to minimum bounding region
until road segments satisfy Prob requirement.

• Data Pre-processing. This component performs two main
tasks: (1) road re-segmentation and (2) trajectory map-
matching. This step breaks the original road segments in the
road network into smaller sections (e.g., 500m) to improve
the precision of the reachability queries, and maps the raw
trajectories onto the new road network.

• Index Construction. This component builds two indexing
structures to speed up the later query processing: (1) spatio-
temporal index and (2) connection index. The spatio-temporal
index partitions trajectories based on space and time. On the
other hand, the connection index links road segments based
on the historical trajectory information, which records a lower
bound range as Near Table and upper bound range as Far Table,
i.e., noted as N and F in Figure 3. The connection index is used
to refine the spatio-temporal reachability query process.

• Query Processing. This component processes queries from the
user. It employs two main techniques: (1) S-Query maximum
bounding region search using our spatio-temporal index and
connection index to generate a rough estimation of the upper
bound of Prob-reachable region based on the query parameters;
and (2) trace back search, which uses the connection index and
the original road network to refine the region from the first step.
We use these two algorithms to answer the U-Query and the
I-Query as well.

3 PRE-PROCESSING AND INDEX CONSTRUCTION

In this section, we introduce the pre-processing steps and the
details of our two indexing structures: (1) a Spatio-Temporal Index
(ST-Index) and (2) a Connection Index (Con-Index).

3.1 Data Pre-Processing

Road Re-segmentation. To generate results with finer granularity,
we process the road network data to break long road segments
into shorter units based on a given length limit (e.g., 500m). New
intersections are added as needed between new segments.
Map-Matching. We then map the raw trajectory data onto the
newly segmented road network. We employ an existing method [5]
to perform the task. Note that we connect all the trips of the same
moving object in one day into a single trajectory. That is to say, a
moving object only has one trajectory per day in our dataset.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

3.2 Index Construction

3.2.1 Spatio-Temporal Index
The ST-Index is used to speed up the process to find out the
corresponding start road segment based on the query location.
The main variation in our spatio-temporal index is having two
levels of temporal information embedded (i.e., time of the day
and date) in order to calculate the Prob-reachable area more
efficiently. Therefore, the ST-Index consists of 3 components:
Temporal Index, Spatial Index and Time List. We can use a B-
tree as the temporal index to find out the start time slot and use
an R-tree as the spatial index to match the start road segment
for a query. For the illustration example and detailed information,
please refer to the supplementary materials.

We compare our indexing structures with state-of-the-art ones.
A wide variety of indexing structures have been developed but
not all of them are applicable to our spatio-temporal reachabil-
ity queries (e.g., TRIFL [6] designed for flash storage and U-
tree [7] considering uncertain objects obeying a probability den-
sity function over multidimensional points.). Other well-known
ST index methods such as the Scalable and Efficient Trajec-
tory Index (SETI) [8], the Practical Index for Spatio-Temporal
(PIST) [9], and the PARtitionned Index for in-NEtwork Trajec-
tories (PARINET) [10] also separate the spatial and temporal
components of data and index the moving objects’ information.
With these ST index methods, users can index the exact position
in a specific road segment at a certain time for a given trajectory. It
is unnecessary to use these advanced indexing structures under our
current problem settings. However, users can adopt any applicable
indexing structure to meet their own needs.
3.2.2 Connection Index
With the spatio-temporal index built as above, a naive solution
to answer the spatio-temporal reachability query can be proposed
as follows. We use the traditional network expansion algorithm,
e.g., [3] to expand the road network from the query location
and verify each expanded road segments to see if it fulfills the
reachability probability by reading the trajectory IDs from the
disk. However, this query process can be prohibitively inefficient,
as it has to access the disk very frequently to retrieve the trajectory
information.

To improve system efficiency and avoid unnecessary disk
accesses, we propose a connection index to skip some network
expansion steps. The basic idea is to use the historical trajectory
data to build a connection table for each road segment and record
the lower and upper bound of its reachable road segments based
on our temporal granularity. In particular, each road segment with
different temporal granularity is associated with: (1) a Near ID
list (lower bound range) and (2) a Far ID list (upper bound
range) indicating the nearest (farthest) road segments that could be
arrived at within the given time slot. Note that our Con-Index can
reflect multi-lane speed pattern [11] by connecting road segments
across different time slots with Near ID list and Far ID list,
since these two ID lists indicate traffic speed variations among
the corresponding road segments.

To build the connection table, we modify the conventional
network expansion algorithm [3]. We generate the Near ID list of
each road segment by considering the minimum speed (removing
the zero speed) in all directions, after which we expand the road
network using the networking expansion algorithm [3] with the
temporal granularity. After that, all the reachable road segments in
this process are added to the table as the Near ID list of the start

Fig. 4. Con-Index. The left table indicates a connection table in time slot
t. The right figure depicts the road segments in the Near ID list and Far
ID list of road segment r1 on a real road network.

road segment. The Far ID list is constructed in a similar way by
using the maximum traveling speed calculated from the historical
trajectories. Figure 4 illustrates a connection table in an arbitrary
time slot of Con-Index. Take road segment r1 as an example.
Road segments (r2, r5, r7, r9) belong to its Near ID list while
road segments (r4, r6, r8, r10, r12, r14, r15) as Far ID list. As can
be seen, the range of Far ID list is larger and extends to more
intersections over the road network.

4 PROCESSING S-QUERY AND U-QUERY

With the ST-index and the Con-Index, we summarize algorithms
to solve the S-Query and the U-Query problems from our prior
conference paper [4] to make our paper self-contained.

4.1 Single-Location ST Reachability Query (S-Query)
A single-location ST reachability query, i.e., S-Query q =
(S, T, L,Prob), includes one query location specified as S = {s},
start time T , a travel duration L, and a probability 0 < Prob ≤ 1.
The S-Query was solved in our prior conference paper [4].
Since it is not directly related to our main contributions of this
paper, please refer to the supplementary materials and our prior
conference paper for details.

4.2 Union-of-Multi-Location ST Reachability Query (U-
Query)
A U-Query (previously called the m-query [4]) is formally defined
as q = (S, T, L,Prob), with a set of querying n locations
S = {s1, · · · , sn}, start time T , travel duration L, and a
confidence probability Prob. The U-Query q asks for the Prob-
reachable region from any of the location s ∈ S during time
interval [T, T + L]. We present the solutions to U-Query to make
this paper self-contained as we use the solution as part of our new
solution for the I-Query.

In theory, if we consider each query location si ∈ S as an
S-Query, namely, q = (si, T, L,Prob), with a result of Prob-
reachable region as Bi, the answer of a U-Query is then the outer-
most bounding regions of the union among all Bi’s. Figure 5(a)
shows an example of U-Query with two start road segments, r1

and r2. The solid lines outline the Prob-reachable region of the
U-Query, which is the outer-most bounding region of two single
Prob-reachable regions of r1 and r2, where the overlapping parts
(in dashed lines) are removed.

The basic idea behind the query processing algorithm for U-
Query is a two-step approach: (i) finding a unifying maximum
and minimum bounding region of the U-Query by checking ST-
Index and Con-Index; (ii) trace back searching the road segments
from the maximum to minimum bounding regions to identify the

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 5. U-Query Bounding Regions. Solid line indicates the outer bound-
ing region which is the real maximum reachable boundary of both r1 and
r2 while dashed line indicating inner bounding regions. Road segments
r1 and r2 are the start locations from a U-Query. Road segment r3 is on
the boundary of r2 while r4 on r1. However, r3 is not on the outer-most
bounding regions while r4 is.

Prob-reachable region of U-Query q. As shown in Figure 5(b),
the maximum and minimum bounding regions are the outer-most
boundary of the merged bounding regions across all single S-
Queries. We develop the U-Query maximum bounding region
search algorithm, which works as follows.
(1) Maximum Bounding Region Search Algorithm. The Multi-
location Query Maximum Bounding region search (MQMB) al-
gorithm for U-Query is presented in Algorithm 1. Given the
start locations S = {s1, · · · , sn} in U-Query q, the algorithm
identifies the set of start road segments R = {r1, · · · , rn}
and starts to expand the maximum bounding regions until the
user-specified travel time T + L (Line 1-2). Then, it simply
constructs the union set B of the maximum bounding regions
of all road segments in R (Line 3-4). As shown in Figure 5(a),
the overlapping parts (in dashed line) are removed and a unifying
maximum bounding region (in solid line) are formed (Line 5-8).

Algorithm 1 Multi-location Query Maximum Bounding region
search (MQMB) algorithm
Input: U-Query q = {S = {s1, · · · , sn}, T, L,Prob}.
Output: Unified Maximum bounding region set Result.

1: Find start road segment list R in ST-Index, Compute k with
k∆t ≤ L < (k + 1)∆t

2: for k′ = 0 to k − 1 do
3: for ∀r in R do
4: Bounding set B ← B ∪ F(r, T + k′∆t).
5: for ∀b in B do
6: rs = argminr′∈R{dis(r

′, b)}
7: if b ∈ F (rs) then
8: Result = Result ∪ {b}
9: R = Result

10: return Result

(2) The U-Query Trace Back Search Algorithm (U-TBS).
The maximum and minimum bounding regions provide a refined
and smaller geographic region to further identify the exact Prob-
reachable region of a U-Query q. It guarantees that all road
segments Prob-reachable are between the maximum and minimum
bounding regions. Utilizing such bounded information, we develop
a trace back search algorithm to search road segments from the
maximum bounding region back to the minimum bounding region
to find the Prob-reachable region, which works as follows. For a
single query road segment r0, we take the following steps to
refine the results. Firstly, by checking ST-Index, we extract the list
of trajectory IDs from the start road segment r0 in time interval
T0 = [T, T+∆t] during each day d, represented as Tr(r0, T0, d),
with 1 ≤ d ≤ m and m as the total number of days in the

trajectory dataset. The maximum bounding region B includes a
list of road segments. For each road segment r ∈ B, we check
the ST-Index to extract the list of trajectory IDs starting from the
road segment r in time interval TB = [T, T + L] of each day
d, represented as Tr(r, TB , d). Then, for each day 1 ≤ d ≤ m,
we check if r is reachable from r0 on day d, by checking if
there are some common trajectories in both Tr(r0, T0, d) and
Tr(r, TB , d). Suppose Tr(r0, T0, d) ∩ Tr(r, TB , d) 6= ∅ holds
for m∗ out of m days, then the reachable probability(r, r0)
from r0 to r during the period of [T, T + L] is as follows,
which represents from historical statistics, the probability that road
segment r is reachable from r0 during time interval [T, T + L].

probability(r, r0) =
m∗

m
× 100%. (1)

For a given r ∈ B, if probability(r, r0) ≥ Prob, the road
segment r is close enough to the start road segment r0 that is
reachable with a higher probability than Prob. r will be included in
the Prob-reachable region set. Otherwise, if probability(r, r0) <
Prob, it means that r does not have large enough probability to be
reached from r0, therefore, we add r’s neighboring road segment
set neighbor(r) to the search space B for further investigation.
Since we search from the maximum bounding region to the
minimum bounding region, the neighboring road segments of r
added are always closer than r to the start road segment r0. The
process terminates when B = ∅ or all the road segments between
maximum and minimum bounding regions are searched.

For a set of multiple query road segments, we modified
the above algorithm when calculating the probability of each
candidate road segment between the two bounding regions. For
the U-Query, if a candidate road segment r can be reached from
any query road segment rs, the candidate is added to the final
result.

Note that we take the probability calculation in Equation (1)
as an example. Since our trajectory data was collected from one
month, if there are some sparse areas with no trajectories, then the
probability is considered 0 since nobody travels to this area based
on historical data. This makes sense in our motivating examples.
In fact, our U-TBS algorithm is flexible to other probability
definitions. Users can define their own probabilities according to
their own needs.

Algorithm 2 U-Query Trace Back Search (U-TBS) algorithm
Input: Bounding set Bmax and Bmin, probability Prob, start road

segments R.
Output: Bounding set B′ with respect to Prob

1: B ← Bmax, B′ = ∅
2: while B 6= ∅ do
3: r ← dequeue(B)
4: found = false
5: for each rs in R do
6: if probability(r, rs) ≥ Prob then
7: B′ ← {r} ∪B′

8: found = true
9: Break

10: if found == false then
11: B ← (neighbor(r)−Bmin) ∪B
12: return B′

The detailed U-Query Trace Back Search (U-TBS) algorithm
is summarized in Algorithm 2. First, bounding set B′ is initialized
and the searching road segment is set as the maximum bounding
region Bmax (Line 1). Then, the algorithm checks if there are still

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 6. I-Query Bounding Regions. In (a), the solid line indicates the
inner bounding region which is the real intersecting reachable boundary
of both r1 and r2 while dashed line indicating non-intersecting outer
bounding regions. Road segments r1 and r2 are the start locations from
an I-Query. Road segment r3 is on the boundary of r2 while r4 on r1.
However, r4 is not on the inner bounding regions while r3 is. In (b), the
solid lines pointing to the dashed lines indicate the trace back search
from maximum to minimum bounding regions of the I-Query.

s

road segments to be searched and examines if r is Prob-reachable
from any road segment in R. If yes, r is added to Prob-reachable
set, and it moves forward to search the next road segment in B (if
any) (Line 2-9); otherwise, we add r’s neighboring road segments
to B (if not yet overlapping with Bmin) for further investigation
(Line 10-11). Finally, the union of the Prob-reachable regions are
reported (Line 12).

5 PROCESSING THE INTERSECTION-OF-MULTI-
LOCATION ST REACHABILITY QUERY (I-QUERY)
This section presents our new contributions in this paper, namely,
the processing algorithms to answer the Intersection-of-Multi-
Location ST Reachability Query, in short, I-Query. An I-Query
is formally defined as q = (S, T, L,Prob), with the same query
settings as U-Query. However, the I-Query q asks for the Prob-
reachable region from all of the location s ∈ S during time
interval [T, T + L]. In theory, if we consider each query location
si ∈ S as an S-Query, namely, q = (si, T, L,Prob), with a result
of Prob-reachable region as Bi, the answer of an I-Query is then
the outer-most bounding regions of the intersection among all
Bi’s. Figure 6(a) shows an example of I-Query with two start
road segments, r1 and r2. The solid lines outline Prob-reachable
region of the I-Query, which is the inner bounding region of the
two single Prob-reachable intersecting regions of r1 and r2, where
the non-intersecting parts (in dashed lines) are removed.
Naive solution. To solve an I-Query, a naive (but always work-
ing) solution is treating an I-Query as multiple S-Queries [4],
answering them one by one, and intersecting the Prob-reachable
regions of each S-Query to obtain the Prob-reachable region for
the I-Query. However, this approach is not efficient because in
any case, we have to run the S-Query n times even if there are
no intersections in the results. Therefore, we are motivated to
develop an I-Query processing algorithm that can automatically
take advantage of the intersection information, to avoid useless
expansion over the road network.
Query processing algorithm for I-Query. The basic idea behind
the query processing algorithm for I-Queries is similar to that for
U-Queries, which is also a two-step approach. As shown in Fig-
ure 6(b), it employs (1) an Intersection-of-Multi-location Query
Maximum Bounding Region Search (I-MQMB) algorithm to
identify the maximum bounding region of candidate roads for
the I-Query, and (2) an I-Query Trace Back Search (I-TBS)
algorithm to refine the results. These two algorithms are different
from the previous U-Query solutions. Because an I-Query requires

Fig. 7. Intersect Conditions. Solid line indicates the inner bounding
region which is the real intersecting reachable boundary of both r1 and
r2 while dashed line indicating non-intersecting outer bounding regions.
Road segments r1 and r2 are the start locations from an I-Query. In (a),
Road segment r3 and r4 are on the inner bounding regions while in (b)
they are on the boundary of r2 and r1 correspondingly.

that the target road segments are reachable from all query locations
while a U-Query requires that the reachability from any of query
locations.

5.1 Step 1: the I-MQMB Algorithm.

I-Queries are more challenging compared to U-Queries since in
addition to road expansions, we also need to check the intersection
of expanded roads from different sources. Therefore, the I-MQMB
algorithm now has two Stages: (1) Intersect bounding region and
(2) Intersect-Unified bounding region. At STAGE 1, we keep track
of all the intersecting bounding regions of the start road segments.
If all of them intersect at some time, we get this intersecting
bounding region and enter STAGE 2. At STAGE 2, we treat
the intersecting bounding region as a single candidate bounding
region and use MQMB algorithm to figure out the final maximum
bounding region.

Specifically, we similarly form a start road segment set Rs

by matching each start location si ∈ S to a start road segment
ri using the R-tree in the ST-Index at the beginning. Then,
for each road segment, we track the expansion of its reachable
region individually using the Con-Index. Next, we compare each
intersected pair to figure out whether a new intersection will
occur or not. Those road segments can be intersected by the
following rule: Given an intersected pair Ra and Rb, for any
road segment r ∈ Ra, if the distance between the nearest road
segment rs ∈ Inter[Rb] (current reachable region of Rb) to r,
i.e., rs = argminr′∈Inter[Rb]{dis(r′, r)} and the nearest road
segment rss ∈ Rb to r, i.e., rss = argminr′∈Rb

{dis(r′, r)} is
greater than the distance between rss and r, r should be included
into the new intersection Rab. Once acquiring an intersection Rab

equal to the start road segment list Rs, we find the intersection
for all start locations. In Figure 7(a), road segment r3 and r4

are reachable for both Ra = {r1} and Rb = {r2}. There-
fore, we get a new intersection Rab = {r1, r2} by checking
dist(r2, r3) ≥ dist(r2, r4). Otherwise, Figure 7(b) illustrates
no new intersection.

The detailed Intersection-of-Multi-location Query Maximum
Bounding region search (I-MQMB) algorithm is summarized in
Algorithm 3. Figure 8 shows a concrete example on how I-
MQMB algorithm works to answer a simple I-Query with four
start locations by efficiently identifying the maximum bounding
region at the first stage. Given the query q = (si, T, L,Prob),
where i = 4, L = 4∆t, we first match each start location si
to a start road segment ri (Line 1) and then find the intersecting
parts of these road segments as many as possible within the given
time duration [T, T + L] (Line 2-8). According to Figure 8(a),

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

the maximum bounding region of start road segments r1 and
r2 have already intersected during time interval [T, T + ∆t],
as well as start road segments r3 and r4 (Line 9-20). Note that
once the bounding region of a start road segment has intersected
with another one, the intersection of these two road segments will
be marked as “checked”, so that the non-intersecting bounding
regions will not be expanded during next time interval (Line 21-
26). To be precise, taking time interval [T + ∆t, T + 2∆t] as
an example in Figure 8(b), there are only two intersect-unified
bounding regions {r1, r2} and {r3, r4} instead of four bounding
regions of r1, · · · , r4 respectively. In detail, the upper left dashed
line indicates the expansion of intersecting parts of start road
segments r1 and r2, while the lower right one indicates r3 and r4.
Next, it keeps on intersecting alternative road segments until the
complete intersection has been checked. As shown in Figure 8(c),
solid line indicates the intersecting of {r1, r2} and {r3, r4}. In
other words, during time interval [T + 2∆t, T + 3∆t], it has
already checked the complete intersection {r1, · · · , r4}. Finally,
it continues expanding the complete intersect-unified bounding
regions (red line in Figure 8(d)) until t = T + 4∆t (Line 27-
29). Otherwise, the algorithm reports an empty set, indicating
no overall intersection of all the start locations (Line 30). Such
mechanism ensures the efficiency of I-MQMB algorithm and
avoids useless expansions.
Algorithm 3 Intersection-of-Multi-location Query Maximum
Bounding region search (I-MQMB) algorithm
Input: I-Query q = {S = {s1, · · · , sn}, T, L,Prob}.
Output: Intersect-Unified Maximum bounding region set Result.

1: Find start road segment list Rs in ST-Index, Compute k with
k∆t ≤ L < (k + 1)∆t

2: Initial checked intersection Inter[Rs] = Rs, flag list Flag = ∅
3: for k′ = 0 to k − 1 do
4: STAGE 1 Intersect bounding region
5: for ∀Ra in Inter.keys do
6: for ∀r in Inter[Ra] do
7: Bounding set B ← B ∪ F(r, T + k′∆t).
8: Inter[Ra]← B; B ← ∅
9: interKeys← Inter.keys; Rab ← ∅

10: while interKeys 6= ∅ do
11: Ra ← dequeue(interKeys)
12: for ∀Rb in Inter.keys do
13: interT = false
14: if Ra 6= Rb and Ra ∪Rb /∈ Flag then
15: Flag.add(Ra ∪Rb)
16: for ∀r in Inter[Ra] do
17: rs = argminr′∈Inter[Rb]

{dis(r′, r)}
18: rss = argminr′∈Rb

{dis(r′, r)}
19: if dist(rss, rs) ≥ dist(rss, r) then
20: Intersection set Rab ← Rab ∪ {r}
21: if Rab 6= ∅ then
22: interT = true; continue
23: if interT then
24: interKeys.delete(Rb); interKeys.add(Rab)
25: Inter[Ra∪Rb]← Rab;Inter.delete(Ra, Rb);Rab ← ∅
26: Flag = ∅
27: if Inter.keys = Rs then
28: STAGE 2 Intersect-Unified bounding region
29: return MQMB(Inter[Rs], T + k′∆t, L− k′∆t,Prob)
30: return Null

5.2 Step 2: the I-TBS Algorithm
Once we obtain the maximum bounding region of the query, we
can use the Trace Back Search algorithm presented in the U-
Query section to find the final result. However, we have to make a
modification on the algorithm. When we evaluate each candidate

Fig. 8. I-Query Example. In (a) and (b), solid lines indicate the outer
bounding regions of both r1 and r2, as well as r3 and r4, while dashed
lines indicating inner bounding regions. Road segments r1, r2, r3 and
r4 are the start locations from an I-Query. Road segment r5 is on the
intersecting boundary of r1 and r2 while r6 on r3 and r4. However,
these two dashed lines do not intersect with each other, indicating
no intersecting road segments of all start road segments r1, · · · , r4.
In (c) and (d), solid lines indicate the inner bounding regions of all
start locations, while dashed lines indicate partial intersecting boundary.
Road segment r7 is on the intersection of bounding regions.

road segment r in the bounded region, we need to evaluate its
reachability from all the query road segments in R. Only when the
road segment is reachable from all (as opposed to only one in U-
Query) the query road segments can it be added to the final output.
We name this algorithm as the I-Query Trace Back Search (I-TBS)
algorithm. The pseudo code is presented in Algorithm 4. Note
Lines 4-11 are different from the U-TBS algorithm. If a candidate
road cannot be reached from any of the start road segments, it will
be dropped out of the results.

Algorithm 4 I-Query Trace Back Search (I-TBS) algorithm
Input: Bounding set Bmax and Bmin, probability Prob, start road

segments R.
Output: Bounding set B′ with respect to Prob

1: B ← Bmax, B′ = ∅
2: while B 6= ∅ do
3: r ← dequeue(B)
4: violate = false
5: for each rs in R do
6: if probability(r, rs) < Prob then
7: B ← (neighbor(r)−Bmin) ∪B
8: violate = true
9: Break

10: if violate == false then
11: B′ ← {r} ∪B′

12: return B′

Note that our approach to solving I-Queries is a feasible,
heuristic solution. The algorithm might not always provide the
theoretically optimal performance but is guaranteed to outperform
the naive solution. We show in the experimental results that our
algorithms are efficient enough to solve I-Query compared with
the baseline method.
6 COMPLEXITY ANALYSIS

In this section, we analyze the time complexities for all the
algorithms we propose in this paper. Since the time complexity

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2
Time Complexity

Algorithm Best Case Worst Case
MQMB O(k2) O(k2 ×BM)
U-TBS O(Bmax) O(B2

max)
I-MQMB O(k2) O(k4 ×B2

M)
I-TBS O(Bmax) O(B2

max)

depends on the query parameters and actual data distributions, we
analyze the best-case and worst-case complexities.

For Algorithm 1 MQMB, we search the Con-Index for k steps
until time duration L, that is, k = L

∆t . In each time slot [T+k′∆t,
T+(k′ + 1)∆t], (0 ≤ k′ ≤ k − 1), for each road segment r in
current bounding set Bk′ , we union their maximum reachable road
segments F (r, T + k′∆t). Iteratively, we check the Con-Index
for (1+1+B1+1+B1+B2+...+1+

∑k
1 Bk′) times. According to

historical data, we obtain the maximum value BM of all maximum
reachable road segment set Bk′ , which is the size of the largest
Far ID list in Con-Index (large constant varying with city size).
Therefore, 1+1+B1+1+B1+B2+...+1+

∑k
1 Bk′ is bounded by

1+1+BM+1+2×BM+...+1+k×BM (=k+1+ (BM+k×BM)×k
2).

The best case of complexity is O(k2) with BM=1 indicating only
one trajectory in each Far ID list. In the worst case, for each
step we have to check all road segments in current maximum
bounding region. Therefore, the worse-case time complexity is
O(2× k2 ×BM) = O(k2 ×BM).

For Algorithm 2 U-TBS, we need to find the bounding set
satisfying probability Prob requirement. With respect to Prob,
the best case is that all road segments in the maximum bound-
ing region satisfy the requirement. In contrast, the worst case
requires to search all road segments between maximum and
minimum bounding regions. Hence, the time complexity depends
on the maximum bounding region Bmax acquired by Algorithm 1
MQMB. Therefore, the best case is O(Bmax) and the worst case
is bounded by O(B2

max − Bmin) = O(B2
max) where Bmin

indicates the minimum bounding region.
For Algorithm 3 I-MQMB, at STAGE 1, we need to double

check whether the road segments of two bounding regions in-
tersect or not, which takes quadratic time to compare each road
segment pair. If we can find the intersection bounding region at
k1 step (k1 < k), then we use MQMB to find the final intersect-
unified maximum bounding region set for the rest steps at STAGE
2. Hence, I-MQMB takes O((k2

1×BM)2) = O(k4
1×B2

M) time at
STAGE 1 while takes O((k−k1)2×BM) at STAGE 2. Therefore,
the best case is to find the intersection of bounding regions at the
first step and then take only O((k − 1)2) = O(k2) time with
BM=1. The total complexity is O(1 + k2) = O(k2). In contrast,
the worst case fails to find the intersection bounding region until
the end, indicating the total complexity of O(k4 ×B2

M).
For Algorithm 4 I-TBS, the complexity is the same as that of

the U-TBS algorithm, which is O(Bmax) in the best case and
O(B2

max − Bmin) = O(B2
max) in the worst case, where Bmin

indicates the minimum bounding region.

7 EVALUATION

In this section, we conduct extensive experiments to evaluate our
new query processing algorithms for I-Queries using the a taxi
trajectory dataset from Shenzhen, China. For detailed evaluations
of the S-Query and the U-Query, please refer to our conference
paper [4]. To make this paper self-contained, we also include
those results in the supplementary materials of this paper.We

TABLE 3
Evaluation Configurations

Parameter Settings
Travel Duration L {5, 10, · · · , 35} minutes. Default: 15 min
Number of Query Loca-
tions |S|

{1, 2, · · · , 9}. Default: 3

Probability Prob {20%, 40%, · · · , 100%}. Default: 20%
Time Interval ∆t {5, 10, 15, 20} minutes. Default: 5 min
Baseline Solutions Multiple S-Queries and Intersect Results
I-Query Algorithms I-MQMB follwed by I-TBS

0 10 20 30 40
Travel Duration (min)

0

25

50

75

100

125

150

R
un

ni
ng

 T
im

e
(s

)

Baseline
I-Query

(a) Varing Travel Duration L

0 2 4 6 8 10
Locations

0

50

100

150

200

250

R
un

ni
ng

 T
im

e
(s

)

Baseline
I-Query

(b) Varing Number of Locations |S|

Fig. 9. Comparison of Baseline and I-Query over travel duration and
number of locations

0.2 0.4 0.6 0.8 1.0
Probability

30

40

50

60

70

R
un

ni
ng

 T
im

e
(s

)

Baseline
I-Query

(a) Varing Probability Prob

5 10 15 20
Time Interval

30

40

50

60

70

R
un

ni
ng

 T
im

e
(s

)

Baseline
I-Query

(b) Varing Time Interval ∆t

Fig. 10. Comparison of Baseline and I-Query over probability and time
interval

mainly focus on the evaluation of the I-Query solution (I-MQMB
+ I-TBS). Our baseline method is a naive solution, where we
run the single-location query (S-Query) algorithms in our prior
conference paper [4] for each query location independently and get
the final query results from the intersection of all results of each
S-Query. Below, we elaborate on the dataset we used, experiment
configurations, and experimental results.

7.1 Data Descriptions and Experiment Configurations
We use a large-scale trajectory dataset collected from taxis in
Shenzhen, with an urban area of about 400 square miles and
ten million people. The dataset was collected during the month
of November, 2014. These trajectories represent 21,385 unique
taxis in Shenzhen. They are equipped with GPS devices, which
periodically (i.e., roughly every 30 seconds) generate GPS records.

Hence, each GPS record in our database is represented as
a spatio-temporal point of a taxi, where in total 407,040,083
GPS records were obtained. Each record has five core attributes
including trajectory ID, longitude, latitude, speed and time. To
calculate the probability of reachable areas, we consider the
same taxi at different dates as different trajectories, e.g., with
different trajectory IDs. The detailed experiment configurations
are listed in Table 3. All the experiments are conducted on a DELL
PowerEdge R370 rack server, with 2x12-core Intel Xeon E5- 2690
processors(2.6 GHz/30M Cache) and 192 GB memory.

7.2 I-Query Evaluation Results on Real Data
Varying Time Duration L. First, we execute I-Queries with three
query locations (Fubin Neighborhood, Futian Business District
and Huanggang Port) and we set the probability threshold as

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0.2 0.4 0.6 0.8 1.0
Probability

0

200

400

600

800

of
 R

oa
d

Se
gm

en
ts

 in
 B

ou
nd

in
g

Re
gi

on
s

of Roads in Bounding Regions

10000

10500

11000

11500

12000

#
 o

f A
cc

es
se

d
R

oa
d

Se
gm

en
ts

of Accessed Roads

(a) Comparison of Road Segments in
Bounding Regions and Accessed Road
Segments during Query Processing

Data Volume (× Original Size)

(b) Comparison of Baseline and I-
Query on Synthetic Data

Fig. 11. Comparison of Road Segments over probability on real data
and Baseline and I-Query on synthetic data

(a) S-Query at Fubin Neighborhood (b) S-Query at Futian Business Dis-
trict

(c) S-Query at Huanggang Port (d) I-Query at 3 locations
Fig. 12. Results of ST reachability queries at three locations

(a) S-Query at Fubin Neighborhood (b) S-Query at Futian Business Dis-
trict

(c) S-Query at Huanggang Port (d) I-Query at 3 locations

Fig. 13. Results of Null for ST reachability queries at three locations

20%, start time as 10am and vary the length of travel duration
L from 5 to 35 minutes. Figure 9(a) shows the running time of
the baseline vs. our I-Query algorithms. The result shows our I-
MQMB+I-TBS algorithm save around 50% processing time over
running the baseline solution. Specifically, our I-MQMB+I-TBS
algorithm only takes 21 seconds to process an I-Query with travel

duration L=15 mins, while the baseline method takes 42 seconds.
Particularly, when the travel duration is larger than 25 minutes,
running time of our I-MQMB+I-TBS algorithms becomes flat.
The reason is that in this case, the reachable regions of these 3
locations have already intersected to a small region at 25 minutes.
After that, we only continue to expand the new intersection region
which is much smaller compared to the outer bounding region.
At last, it takes few more seconds to compute the final result
satisfying the query requirement using the I-TBS algorithm.

Varying Number of Query Locations |S|. We also change the
number of query locations in the I-Query from 1 to 9 randomly
from the city of Shenzhen. We set start time as 10am, travel
duration as 20 minutes and probability as 20%. Figure 9(b) shows
the running time of the baseline vs. our solution. It indicates
that our I-MQMB+I-TBS algorithm does significantly outperform
the baseline. Specifically, as the number of start locations are
increasing, our solution’s advantage becomes more and more
apparent, saving up to 70% running time. Due to the extra step
to check the intersection components in the I-MQMB algorithm,
the overall solution may be slightly slower than the baseline when
the query has only one location (i.e., the S-Query). However,
this procedure does improve processing time with more than one
location.

Varying probability thresold Prob. Then, we fix start locations,
travel duration as 20 minutes and start time as 10 am to study
how different query probabilities influence the performance of our
I-MQMB+I-TBS algorithm. Figure 11(a) shows that as we change
query probability Prob in {20%, 40%, 60%, 80%, 100%}, the
number of accessed road segments during query processing also
increases while the number of road segments within bounding
regions decreases, which indicates that we have to access further
road segments in order to satisfy higher probability requirement
since we search from the maximum bounding region to the
minimum bounding region in I-TBS algorithm. Figure 10(a)
demonstrates the test results of running time. With an increasing
probability threshold, the running time increases roughly linearly
due to accessing more road segments. The overall improvement
of running time compared to the baseline solution is between 30-
50%.

Varying time granularity ∆t. In addition, we also evaluate how
the time interval ∆t affects the running time of our I-MQMB+I-
TBS algorithm. Figure 10(b) shows the running time with varying
∆t between 5 minutes and 20 minutes with a step of 5 minutes.
We observe that the running time is almost unchanged when
varying the time intervals. This indicates that our I-MQMB+I-TBS
algorithm is stable on the system parameter, ∆t, that governs the
time granularity in the indexing structure. The reason behind this is
that increasing the time interval length with L fixed will reduce the
number of time steps but increase the total number of trajectories
in each time slot, therefore making more roads qualified for the
query. The two factors lead to a stable time cost.

Memory Cost. We conduct all experiments using a real taxi
trajectory dataset with 14 million trajectories, which was collected
for 30 days in November, 2014 from 21,385 unique taxis in
Shenzhen, China. According to our indexing structure, it saves
the whole road network and its traversing trajectory IDs instead of
original trajectories. With setting time granularity as 5 mins, the
memory cost of Con-Index is 31 MB while the disk size of storing
R-trees is 36 MB. Therefore, our methods are practical on real big
data.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

7.3 I-Query Evaluation on Synthetic Data.
In order to evaluate the performance of our algorithms on large
datasets, we generate a synthetic data of 30 days by sampling
trajectories from the real dataset we have. We adjust the number
of sampling, which means the ratio between the synthetic data
volume and the real data volume. For each day in the synthetic
data, we randomly sample true trajectories from the real data (any
day and time) and re-arrange these trajectories at a different start
time (day and hour) in the synthetic dataset. When the number
of sampling equals to one, the synthetic dataset is of the same
size as the real dataset but with a shuffled travel date of each
trajectories. Then, in order to increase the traffic volume, we
sample multiple times with replacement to increase the number
of unique trajectories traversing on road segments, which leads to
an increase of the reachability of road segments according to our
probability definition. We sample up to five times the volume of
the original data.

We fix all the parameters to the default values. Figure 11(b)
shows the running time of the algorithms. The running time
decreases more and more slowly but the I-Query algorithms (I-
MQMB + I-TBS) still outperform the baseline by 50%-66%. The
main reason is that the dominant factor of running time during
query processing is the I-TBS algorithm. When we double the
traffic volume, it significantly increases the number of unique
trajectories traversing over the whole road network which results
in expanding the Prob-reachable region of each query roads.
Because I-TBS algorithm trace back searches from the maximum
to the minimum bounding regions, it is easier to meet the threshold
Prob as early as possible with a larger number of trajectories.
Once the probability requirement is met, I-TBS algorithm will
terminate. The cost of this algorithm dominates the total time
cost during query processing, which explains the reasons why the
running time decreases even when we increase the data volume.
However, when the data volume increases to four times the volume
of the original data, the impact on the reachability becomes limited
because trajectories traversing each roads on different dates are
saturated.

In summary, the evaluation results show that our I-MQMB+I-
TBS can reduce on average 50% running time over baseline
solution with different parameter settings such as varying travel
duration L, number of start locations |S|, probability Prob and
time interval ∆t. In addition, it is stable with different time
interval ∆t.

7.4 Case Study

We visualize the results of I-Queries under different parameters.
Figure 12 shows the results of the first case. We observe that
the reachable region of all three locations is the intersection of
reachable areas of three individual S-Queries. According to our
analysis, people from the transportation hub, business district and
living neighborhood could gather at the Union Plaza and meet
for lunch. In our case, people from Fubin Neighborhood and
Huanggang Port are able to reach quite larger region than others
from Futian Business District because of the Binhe Avenue and
Jinggang’ao Expressway (horizontal crossing the map). However,
the final intersecting region mostly depends on the traffic condition
on normal roads which is deceptively changing with the time of
day. Figure 13 visualizes the results when we reduce the duration
time L. The I-Query returns Null result for this case, suggesting
that the query results are sensitive to local traffic condition.

8 RELATED WORK

In this paper, we make the first attempt to study a problem of
mining the spatio-temporal reachable region from a location and
within a time interval. In this section, we discuss three topics that
are closely related to our work and highlight the differences from
them, including (1) Spatio-temperal data management, (2) trajec-
tory query processing, and (3) reachability query processing.
Spatio-temperal data management. Researchers have proposed
a number of decent models to store and index those data. For
spatial information, R-tree structure has been widely used to
index data [12], [13]. Then, B-tree and R-tree are combined
together to store both spatial and temporal information [14]. In
these structures, an R-Tree is maintained for each leaf node of B-
tree, which could take a huge space to store in either an internal
or external storage. With the observation that most of R-trees
share a similar or even same structure, a set of methods have
been developed to compress the index structure into a reasonable
size [15], [16]. Another approach to store and index spatio-
temperal data is to utilize its network structure. The connectivity
of road segment could be maintained using adjacency matrix or
adjacent list [3]. Predictive Tree has been proposed to maintain the
reachability of road segments using additional information such as
road length [2]. Moreover, grid-based indexing structures are used
to store data: first, spatial dimensions are split into different grids,
indexed by Quad-tree or KD-trees, etc; then, based on each spatial
grid, different temporal indices could be built such as scalable
and efficient trajectory index (SETI) [8]. All models above share
a common drawback, namely, they all use separate structure to
represent spatial and temporal aspect of data. However, in real-
world applications, we need an indexing structure that describes
both spatial and temporal aspects of spatio-temporal data. For
example, if two roads are connected to each other, they should be
connected in both spatial dimension and temporal dimension. If it
takes 5 minutes to travel from A to B, the node which represents
road A should be connected to the node of road segment B in 5
minutes. Our proposed Con-Index structure fill this gap that record
connections between connected road segments across different
time slots using speed information.
Trajectory query processing. With a large amount of trajectory
data generated over time, it is increasingly challenging to answer
various trajectory queries in different application scenarios in
urban computing [17], [18], [19]. One typical trajectory query
is range query, where historical trajectories are used to predict the
possibility that a moving object will go towards a next location.
Such query can be answered based on predicted route for every
object in the trajectory database [20]. Moreover, the transformed
Minkowski Sum has been used to answer such range queries, if
the query input is a circular region [21]. In [22], sampling based
approach is proposed to efficiently answer trajectory aggregate
queries, that ask for the total number of trajectories in a user-
specified spatio-temporal region. Another type of popular trajec-
tory query is route query, that answers how to get to a location
from another location. For simple shortest path queries, Dijkstra
Algorithm is the optimal method when any additional information
is available [23]. However, information such as transit nodes,
which can be viewed as the connection between local road network
and general road network, can be used to accelerate shortest path
query [24]. Meanwhile, predicting traffic speed in road network
can also be used to find shortest path [25] and solve traveling
salesman problem [26]. Moreover, researchers have extensively

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

studied trip planning problems, that seek for a best path passing
through a set of distinct objects [27]. Others also take advantage
of time-dependent travel time to solve routing problems [28],
[29]. Overall, our proposed spatio-temporal reachability query
problem is different from the trajectory queries described above,
which aims to find the region that are reachable from a given
location within a time interval. Note that instead of predicting
speed information, traffic patterns reveal the traffic conditions
in different times of day. Combined with appropriate probability
calculation, traffic patterns can identify special activity at some
specific days that can be applied to events prediction. However,
speed patterns couldn’t have the same effect.
Reachability queries. Reachability queries are usually conducted
to test whether there is a path from a node u to another node
v in a (directed) graph setting, which have been widely studied
in the literature, and are treated as a very basic type of graph
queries for many applications. There are three types of techniques
commonly used to process graph reachability query. The transitive
closure (TC) of vertex v is the set of vertices that v can reach
in a graph, normally this TC structure is large and different
methods are proposed to compress TC [30], [31]. Moreover, 2-
hop labeling schema are introduced to solve the query and some
heuristic methods are proposed to reduce the size of labels [32].
The methods [33], [34] construct a small index with a small
construction cost to solve such reachability queries. In urban
setting, the road networks can be naturally viewed as a (directed)
graph. Therefore, these approaches can be applied to find the
reachabilities on road networks. However, all these methods are
designed over static graphs [35]. Our prior work [4] was among
the first to explore data-driven reachability queries. However, it
only considered single-location and union-of-multi-location query.
In this paper we consider the intersection-of-multi-location query
(I-Query), which is more challenging.

9 DISCUSSION AND FUTURE WORK

With the widespread development of location-based services,
trajectory data has been generated and collected in a variety of
applications. Data privacy has become a more important problem.
Therefore, improper mining and publishing trajectory data may
jeopardize individual privacy. In our paper, all the taxi trajectories
are identified by the taxi ID number. However, we do not use
any personal information of the drivers and do not identify their
home locations. The proposed solutions can be applied on any
anonymized trajectory dataset. A copy of the de-identified dataset
and the code for this work is available online.1 In addition to
anonymized data, we would like to consider privacy preserving
query technique on top of the framework to improve privacy
protection, such as the proposed Location Anonymizer [36].

This paper formulated and solved the problem of multi-
location reachability query based on real trajectory data. This
problem is useful to a number of applications such as location-
based advertising and store location choice. However it is also
challenging due to high computational cost and large volume of
real data. In this paper we extend the prior work by introducing a
new type of reachability query, namely, the Intersection-of-multi-
location ST reachability Query (I-Query), where the reachable
region from all the query locations is found. We propose a new
I-MQMB algorithm to find the maximum bounding region of
the solution effectively and use an I-TBS algorithm to refine the

1. https://www.biz.uiowa.edu/faculty/xzhou/paper/Reachability TKDE/

results and find the final solution. Evaluation results on real and
synthetic data show that our solution can save 50%-70% running
time compared to naive solution using our prior results.

In the future, we plan to take advantage of existing methods
to protect the user privacy and apply our indexing structures and
algorithms to a big data processing framework in order to tackle
large-scale trajectory data more efficiently, such as paralleling our
proposed methods using MapReduce [37].

REFERENCES

[1] J. Bao, C.-Y. Chow, M. F. Mokbel, and W.-S. Ku, “Efficient evaluation
of k-range nearest neighbor queries in road networks,” in 2010 Eleventh
International Conference on Mobile Data Management. IEEE, 2010,
pp. 115–124.

[2] A. M. Hendawi, J. Bao, M. F. Mokbel, and M. Ali, “Predictive tree: An
efficient index for predictive queries on road networks,” in 2015 IEEE
31st International Conference on Data Engineering. IEEE, 2015, pp.
1215–1226.

[3] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing
in spatial network databases,” in Proceedings of the 29th international
conference on Very large data bases-Volume 29. VLDB Endowment,
2003, pp. 802–813.

[4] G. Wu, Y. Ding, Y. Li, J. Bao, Y. Zheng, and J. Luo, “Mining spatio-
temporal reachable regions over massive trajectory data,” in Data Engi-
neering (ICDE), 2017 IEEE 33rd International Conference on. IEEE,
2017, pp. 1283–1294.

[5] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An interactive-
voting based map matching algorithm,” in Proceedings of the 2010
Eleventh International Conference on Mobile Data Management. IEEE
Computer Society, 2010, pp. 43–52.

[6] D. H. T. That, I. S. Popa, and K. Zeitouni, “Trifl: A generic trajectory
index for flash storage,” ACM Transactions on Spatial Algorithms and
Systems, vol. 1, no. 2, p. 6, 2015.

[7] Y. Tao, X. Xiao, and R. Cheng, “Range search on multidimensional un-
certain data,” ACM Transactions on Database Systems (TODS), vol. 32,
no. 3, p. 15, 2007.

[8] V. P. Chakka, A. C. Everspaugh, and J. M. Patel, “Indexing large
trajectory data sets with seti,” Ann Arbor, vol. 1001, no. 48109-2122,
p. 12, 2003.

[9] V. Botea, D. Mallett, M. A. Nascimento, and J. Sander, “Pist: an efficient
and practical indexing technique for historical spatio-temporal point
data,” GeoInformatica, vol. 12, no. 2, pp. 143–168, 2008.

[10] I. Sandu Popa, K. Zeitouni, V. Oria, D. Barth, and S. Vial, “Indexing in-
network trajectory flows,” The International Journal on Very Large Data
Bases (VLDB), vol. 20, no. 5, pp. 643–669, 2011.

[11] B. Zhang and G. Trajcevski, “Probabilistic speed profiling for multi-lane
road networks,” in 2017 18th IEEE International Conference on Mobile
Data Management (MDM). IEEE, 2017, pp. 164–173.

[12] A. Guttman, R-trees: a dynamic index structure for spatial searching.
ACM, 1984, vol. 14, no. 2.

[13] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree:
an efficient and robust access method for points and rectangles,” in ACM
SIGMOD Record, vol. 19, no. 2. Acm, 1990, pp. 322–331.

[14] R. H. Güting, T. de Almeida, and Z. Ding, “Modeling and querying
moving objects in networks,” The International Journal on Very Large
Data Bases (VLDB), vol. 15, no. 2, pp. 165–190, 2006.

[15] V. T. De Almeida and R. H. Güting, “Indexing the trajectories of moving
objects in networks,” GeoInformatica, vol. 9, no. 1, pp. 33–60, 2005.

[16] Y. Tao, D. Papadias, and J. Sun, “The tpr*-tree: an optimized spatio-
temporal access method for predictive queries,” in Proceedings of the
29th international conference on Very large data bases-Volume 29.
VLDB Endowment, 2003, pp. 790–801.

[17] A. V. Khezerlou, X. Zhou, L. Tong, Y. Li, and J. Luo, “Forecasting
gathering events through trajectory destination prediction: a dynamic
hybrid model,” IEEE Transactions on Knowledge and Data Engineering,
2019.

[18] Y. Zheng, “Trajectory data mining: an overview,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 6, no. 3, p. 29, 2015.

[19] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing: con-
cepts, methodologies, and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 5, no. 3, p. 38, 2014.

[20] H. Jeung, M. L. Yiu, X. Zhou, and C. S. Jensen, “Path prediction and
predictive range querying in road network databases,” The VLDB Journal,
vol. 19, no. 4, pp. 585–602, 2010.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959531, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[21] R. Zhang, H. Jagadish, B. T. Dai, and K. Ramamohanarao, “Optimized
algorithms for predictive range and knn queries on moving objects,”
Information Systems, vol. 35, no. 8, pp. 911–932, 2010.

[22] Y. Li, C.-Y. Chow, K. Deng, M. Yuan, J. Zeng, J.-D. Zhang, Q. Yang,
and Z.-L. Zhang, “Sampling big trajectory data,” in Proceedings of the
24th ACM International on Conference on Information and Knowledge
Management. ACM, 2015, pp. 941–950.

[23] M. Thorup and U. Zwick, “Approximate distance oracles,” Journal of the
ACM (JACM), vol. 52, no. 1, pp. 1–24, 2005.

[24] H. Bast, S. Funke, and D. Matijević, “Transit: ultrafast shortest-path
queries with linear-time preprocessing,” in 9th DIMACS Implementation
Challenge—Shortest Path, 2006.

[25] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding fastest paths on a
road network with speed patterns,” in Data Engineering (ICDE), 2006
IEEE 22nd International Conference on. IEEE, 2006, pp. 10–10.

[26] Z. Lv, J. Xu, K. Zheng, H. Yin, P. Zhao, and X. Zhou, “Lc-rnn: A
deep learning model for traffic speed prediction.” in International Joint
Conferences on Artificial Intelligence (IJCAI), 2018, pp. 3470–3476.

[27] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, “On
trip planning queries in spatial databases,” in International Symposium
on Spatial and Temporal Databases. Springer, 2005, pp. 273–290.

[28] B. Fleischmann, M. Gietz, and S. Gnutzmann, “Time-varying travel times
in vehicle routing,” Transportation science, vol. 38, no. 2, pp. 160–173,
2004.

[29] G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter, “Minimum time-
dependent travel times with contraction hierarchies,” Journal of Experi-
mental Algorithmics (JEA), vol. 18, pp. 1–4, 2013.

[30] Y. Chen and Y. Chen, “An efficient algorithm for answering graph
reachability queries,” in 2008 IEEE 24th International Conference on
Data Engineering. IEEE, 2008, pp. 893–902.

[31] S. J. van Schaik and O. de Moor, “A memory efficient reachability
data structure through bit vector compression,” in Proceedings of the
2011 ACM SIGMOD International Conference on Management of data.
ACM, 2011, pp. 913–924.

[32] J. Cai and C. K. Poon, “Path-hop: efficiently indexing large graphs
for reachability queries,” in Proceedings of the 19th ACM international
conference on Information and knowledge management. ACM, 2010,
pp. 119–128.

[33] S. Seufert, A. Anand, S. Bedathur, and G. Weikum, “Ferrari: Flexible
and efficient reachability range assignment for graph indexing,” in Data
Engineering (ICDE), 2013 IEEE 29th International Conference on.
IEEE, 2013, pp. 1009–1020.

[34] R. R. Veloso, L. Cerf, W. Meira Jr, and M. J. Zaki, “Reachability queries
in very large graphs: A fast refined online search approach.” in Extending
Database Technology (EDBT). Citeseer, 2014, pp. 511–522.

[35] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and time-
based path queries in temporal graphs,” in Data Engineering (ICDE),
2016 IEEE 32nd International Conference on. IEEE, 2016, pp. 145–
156.

[36] M. F. Mokbel, “Towards privacy-aware location-based database servers,”
in Data Engineering (ICDE) Workshops, 2006 IEEE 22nd International
Conference on. IEEE, 2006, pp. 93–93.

[37] L. Alarabi, M. F. Mokbel, and M. Musleh, “St-hadoop: A mapreduce
framework for spatio-temporal data,” GeoInformatica, vol. 22, no. 4, pp.
785–813, 2018.

Yichen Ding received a Bachelor’s degree in
Statistics and a MS in Data Science. She is cur-
rently a Ph.D. student in the Department of Busi-
ness Analytics at Tippie College of Business, the
University of Iowa. Her current research interests
include big data analytics, spatial temporal data
mining and urban computing.

Xun Zhou is currently an Assistant Professor
in the Department of Business Analytics at the
University of Iowa. He received a PhD degree
in Computer Science from the University of Min-
nesota, Twin Cities in 2014. His research inter-
ests include big data management and analyt-
ics, spatial and spatio-temporal data mining, and
Geographic Information Systems (GIS). He has
published over 40 papers in these areas and has
received four best paper awards. He also served
as a co-editor-in-chief of Springer’s Encyclope-

dia of GIS, 2nd Edition.

Guojun Wu received a Bachelor’s degree in
Management Information System from Beihang
University. He is currently a Ph.D. student in the
Data Science Program at Worcester Polytechnic
Institute. His general research interests include
Urban data analysis and User choice modeling.

Yanhua Li (S’09-M’13-SM’16) received two
Ph.D. degrees in electrical engineering from Bei-
jing University of Posts and Telecommunications,
Beijing in China in 2009 and in computer sci-
ence from University of Minnesota at Twin Cities
in 2013, respectively. He has worked as a re-
searcher in HUAWEI Noah’s Ark LAB at Hong
Kong from Aug 2013 to Dec 2014, and has
interned in Bell Labs in New Jersey, Microsoft
Research Asia, and HUAWEI research labs of
America from 2011 to 2013. He is currently an

Assistant Professor in the Department of Computer Science at Worces-
ter Polytechnic Institute (WPI) in Worcester, MA. His research inter-
ests are urban network data analytics, smart cities, data-driven cyber-
physical systems (CPS).

Jie Bao got his Ph.D degree in Computer Sci-
ence from University of Minnesota at Twin Cities
in 2014. He worked as a researcher in Urban
Computing Group at MSR Asia from 2014 to
2017. He currently leads the Data Platform Di-
vision in JD Urban Computing Business Unit.
His research interests include: Spatio-temporal
Data Management/Mining, Urban Computing,
and Location-based Services.

Yu Zheng is a Vice President and Chief Data
Scientist at JD Finance Group, passionate about
using big data and AI technology to tackle urban
challenges. His research interests include big
data analytics, spatio-temporal data mining, ma-
chine learning, and artificial intelligence. He also
leads the JD Urban Computing Business Unit as
the president and serves as the director of the
JD Intelligent City Research. Before Joining JD,
he was a senior research manager at Microsoft
Research. Zheng is also a Chair Professor at

Shanghai Jiao Tong University, an Adjunct Professor at Hong Kong
University of Science and Technology.

Jun Luo is a senior researcher at Lenovo Ma-
chine Intelligence Center in Hong Kong. He re-
ceived his PhD degree in computer science from
the University of Texas at Dallas, USA, in 2006.
His research interests include big data, machine
learning, spatial temporal data mining and com-
putational geometry. He has published over 90
journal and conference papers in these areas.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 21:58:40 UTC from IEEE Xplore. Restrictions apply.

